The generator matrix

 1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  X  X  X  X  X  X  X  X  X  X  X  X  X  X  X  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1 X^2 X^2 X^2 X^2 X^2 X^2 X^2 X^2 X^2 X^2 X^2 X^2 X^2 X^2 X^2  X  X  X  X  X  X  X  X  X  X  X  X  X  X  X
 0 X^3  0  0  0  0  0  0  0 X^3 X^3 X^3 X^3 X^3 X^3 X^3  0  0  0  0  0  0  0  0 X^3 X^3 X^3 X^3 X^3 X^3 X^3 X^3  0  0  0  0 X^3 X^3 X^3 X^3  0  0 X^3 X^3  0 X^3 X^3  0  0  0  0  0  0  0  0 X^3 X^3 X^3 X^3 X^3 X^3 X^3 X^3  0  0  0  0 X^3 X^3 X^3 X^3  0  0 X^3 X^3  0 X^3 X^3  0  0  0  0 X^3 X^3  0  0 X^3 X^3  0  0 X^3 X^3  0
 0  0 X^3  0  0  0 X^3 X^3 X^3 X^3 X^3  0 X^3 X^3  0  0  0  0  0  0 X^3 X^3 X^3 X^3 X^3 X^3 X^3 X^3  0  0  0  0  0  0 X^3 X^3 X^3 X^3  0  0  0 X^3 X^3  0 X^3 X^3  0  0  0  0  0 X^3 X^3 X^3 X^3 X^3 X^3 X^3 X^3  0  0  0  0  0  0 X^3 X^3 X^3 X^3  0  0  0 X^3 X^3  0 X^3 X^3  0  0  0  0 X^3 X^3  0  0 X^3 X^3  0 X^3 X^3 X^3 X^3  0
 0  0  0 X^3  0 X^3 X^3 X^3  0  0  0  0 X^3 X^3 X^3 X^3  0  0 X^3 X^3 X^3 X^3  0  0  0  0 X^3 X^3 X^3 X^3  0  0  0 X^3 X^3  0  0 X^3 X^3  0 X^3 X^3  0  0  0 X^3 X^3  0  0 X^3 X^3 X^3 X^3  0  0  0  0 X^3 X^3 X^3 X^3  0  0  0 X^3 X^3  0  0 X^3 X^3  0 X^3 X^3  0  0  0 X^3 X^3  0  0 X^3 X^3  0  0 X^3 X^3 X^3 X^3  0  0  0 X^3  0
 0  0  0  0 X^3 X^3  0 X^3 X^3  0 X^3 X^3 X^3  0  0 X^3  0 X^3 X^3  0  0 X^3 X^3  0  0 X^3 X^3  0  0 X^3 X^3  0 X^3 X^3  0  0  0  0 X^3 X^3  0 X^3 X^3  0 X^3 X^3  0  0 X^3 X^3  0  0 X^3 X^3  0  0 X^3 X^3  0  0 X^3 X^3  0 X^3 X^3  0  0  0  0 X^3 X^3  0 X^3 X^3  0 X^3 X^3  0  0 X^3 X^3  0  0  0  0 X^3 X^3  0 X^3  0 X^3  0  0

generates a code of length 93 over Z2[X]/(X^4) who�s minimum homogenous weight is 92.

Homogenous weight enumerator: w(x)=1x^0+74x^92+128x^93+32x^94+15x^96+6x^108

The gray image is a linear code over GF(2) with n=744, k=8 and d=368.
This code was found by Heurico 1.16 in 0.593 seconds.